1. Czes¢ 1z2 — glownie backend

1.1. Opis aplikacji
Jest to aplikacja do zarzadzania wydarzeniami. Pozwala ona dodawa¢ wydzrzenia oraz przeglada¢ zaplanowane
wydarzenia w wybranym tygodniu, podobnie do Google Calendar. Aplikacja napisana w j¢zyku angielskim.

1.2. Opis kodu
Struktura projektu:

4 5@ Dialogs
4 5! AddEventWindow.xaml

c® AddEventWindow.xaml.cs
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UserControls
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c® TimePickerxaml.cs
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* Assemblylnfo.cs
* Event.cs
MainWindow.xaml
c® MainWindow.xaml.cs

MainWindow:

- MainW’lnd-:w

0000
0:00

Q2:00

03:00

3 Glowne elementy: Kalendarz, przycisk dodania wydarzenia, ptaszczyzna dla umieszczenia wydarzen.

Plaszczyzna narysowana recznie w AutoCad.



Gtowne pole: Grid, 2 kotumny. Etykiety dni tygodnia sg statyczne, etykiety numeru dnia sg przywigzane
poprzez Context do klasy MainViewModel, ktora jest zbiorczg klasg zawierajagcg wszystkie zmienne do ktorych
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beda przywigzane elementy umieszczone na MainWindow aplikacji.

MainViewModel : INotifyPropertyChanged

PropertyChangedEventHandler PropertyChanged;
DateTime sunday, monday, tuesday, wednesday, thursday, friday, saturday, selectedDate;

DateTime Sunday

DateTime Monday

DateTime Tuesday

DateTime Wednesdayf

DateTime Thursday|

DateTime Friday
DateTime Saturday
{ return saturday; }

saturday = ;
RaisePropertyChanged("Saturday”);

DateTime SelectedDate




Aby dziata¢ jako Context klasa implementuje interfejs INotifyPropertyChanged, a zmiana pdl powoduje
wywotanie metody RaisePropertyChanged().

RaisePropertyChanged( propertyName)

PropertyChanged? . Invoke( PropertyChangedEventArgs(propertyName));

MainWindow : Window

ObservableCollection<Event> Events {
MainViewModel ViewModel;

MainWindow()
InitializeComponent();

Events = ObservableCollection<Event>();

Calendar.SelectedDate = DateTime.Today;
ViewModel = MainViewModel(Calendar.SelectedDates[8]);

.DataContext = ViewModel;

Calendar.SelectedDatesChanged += Calendar SelectedDatesChanged;

Typ kolekeji ObservableCollection w WPF potrzebny dla zmiany wyswitlanych elementow przywigzanych do
zmieniajacych si¢ obiektow.
Linia 150 — zaznaczenie daty w kalendarzu wywotuje metode Calendar_SelectedDatesChanged().

Calendar_SelectedDatesChanged( sender, SelectionChangedEventArgs e)

EventsCanvasPanel.Children.Clear();
ViewModel.SelectedDate = Calendar.SelectedDates[8];

foreach (Event ev in Events)

{
if (ev.Day >= ViewModel.Sunday && ev.Day < ViewModel.Sunday.AddDays(7))

{

eventCard = EventControlCard(ev);

switch (ev.Day.DayOfWeek)
Canvas.SetTop(eventCard, 29 + (int)Math.Round((ev.StartTime).TotalSeconds / 114.5));

EventsCanvasPanel .Children.Add(eventCard);

Przy zmianie zaznaczonej daty w kalendarzu:

1. Usuwajg si¢ wszystkie wydarzenia z ola wydarzen.




2. Zieniaja si¢ wartos$ci etykiet numeru dnia tygodnia (linia 164)

3. Na pole wydarzen dodawane sg wszystkie wydarzenia z wybranego tygodnia. Kazde wydarzenie
pozycjonowane zgodnie z dniem i czasem, a rozmiar zalezy od trwatoSci wydarzenia.

Dodawanie wydarzenia odbywa si¢ metodg AddEventButton_Click().

AddEventButton_Click( sender, RoutedEventArgs e)

AddEventWindow addEventWindow = AddEventWindow();
addEventWindow.ShowDialog();]

if (addEventWindow.DialogResult.HasValue && addEventWindow.DialogResult.Valu
{

Event ev = addEventWindow.Event;
Events.Add(ev);

}

Calendar_SelectedDatesChanged(Calendar, );

Wywotuje ono dialog AddEventWindow, ostatnia linija dla ponownego usuwania i dodawania wydarzen razem
z noym wydarzeniem.

AddEventWindow jest dialogem dla dodawania wydarzenia. Oprdcz prostych etykiet, przyciskow 1 pol
tekstowych zawiera ono rowniez recznie stworzny kontroller TimePicker dla wyboru godziny, a data wybiera
si¢ istniejgcym kontrollerem DayPicker. Tworzy i zwraca obiekt wydarzenia.

Cancel

Klasa wydarzen Event



Title { ;

Description {
Location {
CartHeight

{ return ( IMath.Round((EndTime - StartTime).TotalSeconds/112.5) ; }
'

Oproécz pol zwigzanych z wydarzeniem zawiera pole CartHeight ktore zwraca wysokos¢ karty wydarzenia we
wiasciwym typie int. Karta wydarzenia jest wtasnie stworzong kontrollerem EventControlCard.
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Wszyskie pola tekstowe kontrollera EventControlCard sg przywigzane do pol Context, czyli do przeslanej klasy
Event:

InitializeComponent();
DataContext = ev;




