1. Czes¢ 1z2 — glownie backend

1.1. Opis aplikacji
Jest to aplikacja do zarzadzania wydarzeniami. Pozwala ona dodawa¢ wydzrzenia oraz przeglada¢ zaplanowane
wydarzenia w wybranym tygodniu, podobnie do Google Calendar. Aplikacja napisana w j¢zyku angielskim.

1.2. Opis kodu
Struktura projektu:

4 5@ Dialogs
4 5! AddEventWindow.xaml

c® AddEventWindow.xaml.cs
4 3@ Images
1 calendar grid.bak
calendar grid.dwg
| calendar_grid - Copy.jpg
| calendar_grid.jpg
UserControls
\.,] EventControlCard.xaml
I} TimePickerxaml
c® TimePickerxaml.cs
gitattributes
.gitignore
App.xaml
* Assemblylnfo.cs
* Event.cs
MainWindow.xaml
c® MainWindow.xaml.cs

MainWindow:

- MainW’lnd-:w

0000
0:00

Q2:00

03:00

3 Glowne elementy: Kalendarz, przycisk dodania wydarzenia, ptaszczyzna dla umieszczenia wydarzen.

Plaszczyzna narysowana recznie w AutoCad.

Gtowne pole: Grid, 2 kotumny. Etykiety dni tygodnia sg statyczne, etykiety numeru dnia sg przywigzane
poprzez Context do klasy MainViewModel, ktora jest zbiorczg klasg zawierajagcg wszystkie zmienne do ktorych

Grid Name Background=[
Grid.ColumnDefinitions
ColumnDefinition Width
ColumnDefinition Width
Grid.ColumnDefinitions
Calendar x:Name Grid.Column Margin
Button x:Name Grid.Column Margin Content
Click
DockPanel Width Margin Grid.Column Panel.ZIndex
Canvas DockPanel.Dock Background=M Height
StackPanel Orientation Canvas.Left Canvas.Top
Label Content Width
Label Content Width
Label Content wWidth
Label Content Width
Label Content wWidth
Label Content Width
Label Content
StackPanel
StackPanel Orientation Canvas.Top Canvas.Left
TextBlock Text="{Binding Sunday, StringFormat={}{@: dd Width
TextBlock Text="{Binding Monday, StringFormat={}{@: dd Width
TextBlock Text="{Binding Tuesday, StringFormat={}{@: dd Width
TextBlock Text="{Binding Wednesday, StringFormat={}{@: dd Width
TextBlock Text="{Binding Thursday, StringFormat={}{@: dd Width
TextBlock Text="{Binding Friday, StringFormat={}{@: dd Width
TextBlock Text="{Binding Saturday, StringFormat={}{@: dd
StackPanel
Canvas

ScrollViewer
Canvas x:Name Width

beda przywigzane elementy umieszczone na MainWindow aplikacji.

MainViewModel : INotifyPropertyChanged

PropertyChangedEventHandler PropertyChanged;
DateTime sunday, monday, tuesday, wednesday, thursday, friday, saturday, selectedDate;

DateTime Sunday

DateTime Monday

DateTime Tuesday

DateTime Wednesdayf

DateTime Thursday|

DateTime Friday
DateTime Saturday
{ return saturday; }

saturday = ;
RaisePropertyChanged("Saturday”);

DateTime SelectedDate

Aby dziata¢ jako Context klasa implementuje interfejs INotifyPropertyChanged, a zmiana pdl powoduje
wywotanie metody RaisePropertyChanged().

RaisePropertyChanged(propertyName)

PropertyChanged? . Invoke(PropertyChangedEventArgs(propertyName));

MainWindow : Window

ObservableCollection<Event> Events {
MainViewModel ViewModel;

MainWindow()
InitializeComponent();

Events = ObservableCollection<Event>();

Calendar.SelectedDate = DateTime.Today;
ViewModel = MainViewModel(Calendar.SelectedDates[8]);

.DataContext = ViewModel;

Calendar.SelectedDatesChanged += Calendar SelectedDatesChanged;

Typ kolekeji ObservableCollection w WPF potrzebny dla zmiany wyswitlanych elementow przywigzanych do
zmieniajacych si¢ obiektow.
Linia 150 — zaznaczenie daty w kalendarzu wywotuje metode Calendar_SelectedDatesChanged().

Calendar_SelectedDatesChanged(sender, SelectionChangedEventArgs e)

EventsCanvasPanel.Children.Clear();
ViewModel.SelectedDate = Calendar.SelectedDates[8];

foreach (Event ev in Events)

{
if (ev.Day >= ViewModel.Sunday && ev.Day < ViewModel.Sunday.AddDays(7))

{

eventCard = EventControlCard(ev);

switch (ev.Day.DayOfWeek)
Canvas.SetTop(eventCard, 29 + (int)Math.Round((ev.StartTime).TotalSeconds / 114.5));

EventsCanvasPanel .Children.Add(eventCard);

Przy zmianie zaznaczonej daty w kalendarzu:

1. Usuwajg si¢ wszystkie wydarzenia z ola wydarzen.

2. Zieniaja si¢ wartos$ci etykiet numeru dnia tygodnia (linia 164)

3. Na pole wydarzen dodawane sg wszystkie wydarzenia z wybranego tygodnia. Kazde wydarzenie
pozycjonowane zgodnie z dniem i czasem, a rozmiar zalezy od trwatoSci wydarzenia.

Dodawanie wydarzenia odbywa si¢ metodg AddEventButton_Click().

AddEventButton_Click(sender, RoutedEventArgs e)

AddEventWindow addEventWindow = AddEventWindow();
addEventWindow.ShowDialog();]

if (addEventWindow.DialogResult.HasValue && addEventWindow.DialogResult.Valu
{

Event ev = addEventWindow.Event;
Events.Add(ev);

}

Calendar_SelectedDatesChanged(Calendar,);

Wywotuje ono dialog AddEventWindow, ostatnia linija dla ponownego usuwania i dodawania wydarzen razem
z noym wydarzeniem.

AddEventWindow jest dialogem dla dodawania wydarzenia. Oprdcz prostych etykiet, przyciskow 1 pol
tekstowych zawiera ono rowniez recznie stworzny kontroller TimePicker dla wyboru godziny, a data wybiera
si¢ istniejgcym kontrollerem DayPicker. Tworzy i zwraca obiekt wydarzenia.

Cancel

Klasa wydarzen Event

Title { ;

Description {
Location {
CartHeight

{ return (IMath.Round((EndTime - StartTime).TotalSeconds/112.5) ; }
'

Oproécz pol zwigzanych z wydarzeniem zawiera pole CartHeight ktore zwraca wysokos¢ karty wydarzenia we
wiasciwym typie int. Karta wydarzenia jest wtasnie stworzong kontrollerem EventControlCard.

Programowanie
15:00:00
‘Ila:tm:oo ‘I
0
Desc m

WrapPanel Orientation Width Height Binding CartHeight Background=
TextBlock Text Binding Title}" FontWeight Height Width TexthWrapping
TextBlock Text Binding StartTime}" Height TextWrapping
TextBlock Text Binding EndTime Height TextWrapping
TextBlock Text Binding Location}" Height TextWrapping
TextBlock Text Binding Description Height TextWrapping

WrapPanel

Wszyskie pola tekstowe kontrollera EventControlCard sg przywigzane do pol Context, czyli do przeslanej klasy
Event:

InitializeComponent();
DataContext = ev;

